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Introduction
Linear Systems

Dynamical systems

Eẋ(t) = f(t,x(t),u(t))), x(0) = 0,

y(t) = Cx(t),
where

(generalized) states x(t) ∈ Rn (invertible E ∈ Rn×n),

inputs (controls) u(t) ∈ Rm,

outputs (measurements, quantity of interest) y(t) ∈ Rq.
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Dynamical systems

Eẋ(t) = f(t,x(t),u(t))), x(0) = 0,

y(t) = Cx(t),
where

(generalized) states x(t) ∈ Rn (invertible E ∈ Rn×n),

inputs (controls) u(t) ∈ Rm,

outputs (measurements, quantity of interest) y(t) ∈ Rq.

System Classes

Classical linear systems: f(x) := Ax(t) + Bu(t),

Delay systems: f(x) := Ax(t) + Aτx(t− τ) + Bu(t),

Second-order system f(x) := Ax(t) + A1

∫ t

0

x(τ)dτ +

∫ t

0

Bu(τ)τ , . . . ,
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outputs (measurements, quantity of interest) y(t) ∈ Rq.

Frequency domain representation

Using Laplace transform, we can convert time-domain representation into the frequency domain.

This yields Y(s) = H(s)U(s).

Hence, H(s), called as transfer function is known, we can write the output of a system for any
given input.

Moreover, H(s), the transfer function of a system, completely characterize the dynamics.
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Introduction
Linear Systems

Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

Linear system (standard)

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t),

y(t) = Cx(t).

Second-order system

Eẋ(t) = Ax(t) +Aτx(t−τ) +Bu(t),

y(t) = Cx(t).

Delay system

Eẋ(t) = Ax(t) +Aτ

∫ t

0
x(τ)dτ +Bu(t),

y(t) = Cx(t).

Integro system

G(s) = C(sE−A)−1B.

Linear system (standard)
Time 7→ Frequency

G(s) = C(s2M+ sD+K)−1B.

Second-order system
Time 7→ Frequency

G(s) = C
(
sE−A−Aτ e

−sτ )−1
B.

Delay system
Time 7→ Frequency

G(s) = C

(
sE−A−

1

s
Aτ

)−1

B.

Integro system
Time 7→ Frequency
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Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

Linear system (standard)
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Eẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t).

Linear system (standard)
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Introduction
How to measure the transfer function

Excite the system

Very useful when system parameters are
not known.

Modeling is done using a proprietary
software

 not so easy to get system matrices

However, we can obtain transfer function
evaluation much easier
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Introduction
Goal

Goal of the talk

Build a linear model M such that

(a) it interpolates given transfer function measurements, i.e., HM(jωi) = vi,

(b) the model has the structure, given by engineering experts, e.g. second-order, delay, fractional, etc.

−4 −2 0 2 4

0

1

2

3
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Data-driven Identification
Already talks along these lines
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Data-driven Identification
Already talks along these lines

Rational interpolation problem

Given interpolation points {σ1, . . . ,σ2l} ⊂ C and sample values {γ1, . . . , γ2l} ⊂ C, construct a rational

function H(s) = C (sE−A)
−1

B, satisfying

H(σj) = γj , j = 1, . . . , 2l
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Data-driven Identification
Loewner framework

Let us recall the Loewner framework in the single-input single-output case.

Data set as

{
interpolation points σk ∈ C,

sample values γk ∈ C,
for k = 1, . . . , 2l.

Partition the data into the left & right sets:

{(σk, γk)} = {(µi,vi) ∪ (λi,wi)}, k = 1, . . . , 2l, i = 1, . . . , l.

Objective

Find a rational function H(s) = C (sE−A)
−1

B such that

H(µj) = vj , H(λi) = wi.

Let us organize the data as follows:

Interpolation points : Λ = diag (λ1, . . . ,λl) , Ω = diag (µ1, . . . ,µl) ,

Sample values : V =
[
v1, . . . , vl

]T
, W =

[
w1, . . . ,wl

]T
.
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Data-driven Identification
Loewner framework

Loewner Approach (Matrix form)

Let L and Lσ satisfy:

−LΛ + Lσ = V1T ,

−LTΩ + Lσ
T = W1T ,

The rational function H(s) = C(sE−A)−1B interpolates the data, where

E = −L, A = −Lσ, B = V, and C = W,

and the pencil (L, Lσ) is regular.

Remarks

No need to solve Sylvester equations ⇒ matrices L and Lσ have analytic expressions.

rank (L) = order of minimal realization = r.

Hence, a compression step using SVD of L and Lσ can be performed to obtain a minimal or approximate.
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Data-driven Identification
Structured Linear Systems

Objective: rational functions

Find a rational function H(s) = C (sE−A)
−1

B such that

H(µj) = vj , H(λi) = wi.

Objective: structured (non-)rational functions

Find a (non-)rational function Hnr(s) = C (f1(s)A1 + f2(s)A2 + f3(s)A3)
−1

B such that

Hnr(µj) = vj , Hnr(λi) = wi.

Fit into second-order systems, delay systems, fractional systems, etc.
Once again, we organize the data as follows:

interpolation points : Λ = diag (λ1, . . . ,λl) , Ω = diag (µ1, . . . ,µl) ,

Sample values : V =
[
v1, . . . ,vl

]T
, W =

[
w1, . . . ,wl

]T
.
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Data-driven Identification
Structured Linear Systems

Objective: rational functions
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−1

B such that

H(µj) = vj , H(λi) = wi.
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−1
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Data-driven Identification
Structured Linear Systems

Identification of structured systems [Unger/Schulze/Beattie/Gugercin ’16]

Let us say the matrices A1, A2, and A3 satisfy:

A1F
Λ
1 + A2F

Λ
2 + A3F

Λ
3 = V1T ,

A1
TFΩ

1 + A2
TFΩ

2 + A3
TFΩ

3 = W1T ,

where FΛ
i = diag (fi(λ1), . . . , fi(λl)) , FΩ

i = diag (fi(µ1), . . . , fi(µl)) , and V and W are vectors,
containing measurements.

The function Hnr(s) = WT (f1(s)A1 + f2(s)A2 + f3(s)A3)−1V interpolates the data, i.e.,

Hnr(λi) = wi, Hnr(µi) = vi,

assuming [A1,A2,A3] is of row full-rank. If it is not full-rank, a compression step can be performed.
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Data-driven Identification
Structured Linear Systems

Realizing
H = C(sE−A)−1B

Number of equations: 2l2

Number of variables: 2l2

Unique solution

Analytical expression (divide and
difference)

Realizing
H = C(f1(s)A1 + f2(s)A2 + f3(s)A3)−1B

Number of equations: 2l2

Number of variables: 3l2

Infinitely many solutions

No such thing

In dynamical systems, simplicity can be defined as “minimal order systems, describing the dynamics, or
interpolating the data ”.
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Data-driven Identification
Structured Linear Systems

Realizing
H = C(sE−A)−1B

Number of equations: 2l2

Number of variables: 2l2
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Analytical expression (divide and
difference)

Realizing
H = C(f1(s)A1 + f2(s)A2 + f3(s)A3)−1B

Number of equations: 2l2

Number of variables: 3l2

Infinitely many solutions

No such thing

Remark: [Unger ’16] have tried to enforce additional con-
straints/conditions to utilize extra variables.

In dynamical systems, simplicity can be defined as “minimal order systems, describing the dynamics, or
interpolating the data ”.
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Data-driven Identification
How to put together

Identification of structured systems [Unger/Schulze/Beattie/Gugercin ’16]

Let us say the matrices A1, A2, and A3 satisfy:

A1F
Λ
1 + A2F

Λ
2 + A3F

Λ
3 = V1T ,

A1
TFΩ

1 + A2
TFΩ

2 + A3
TFΩ

3 = W1T ,

where FΛ
i = diag (fi(λ1), . . . , fi(λl)) , FΩ

i = diag (fi(µ1), . . . , fi(µl)) ,

A result [Benner/G./Pontes ’19]

rank
([
A1,A2,A3

])
= minimum order of a realization that interpolates the data.

©Pawan Goyal, goyalp@mpi-magdeburg.mpg.de A Rank Minimization Approach to Learning Dynamical Systems from Frequency Response Data 14/29

mailto:goyalp@mpi-magdeburg.mpg.de


Rank Minimization Problems
Optimization Formulation

A rank-minimization Problem Formulation

min
A1,A2,A3

rank
([
A1,A2,A3

])
subject to

A1F
Λ
1 + A2F

Λ
2 + A3F

Λ
3 = V1T ,

A1
TFΩ

1 + A2
TFΩ

2 + A3
TFΩ

3 = W1T ,

where FΛ
i = diag (fi(λ1), . . . , fi(λl)) , FΩ

i = diag (fi(µ1), . . . , fi(µl)) , and V and W are vectors,
containing measurements.
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Rank Minimization Problems
Illustration

A delay example

Consider a delay system whose transfer function is: H(s) = (s+ 1− 0.25e−s)−1.

Take four distinct measurements: H(σ1),H(σ2),H(µ1),H(µ2)

Necessary Conditions for interpolation [Unger et. al ’16]

E [ σ1
σ2

] + A [ 1
1 ] + Aτ

[
e−σ1

e−σ2

]
=
[
H(µ1)
H(µ2)

]
1T =: B1T ,

ET [ µ1
µ2 ] + AT [ 1

1 ] + AT
τ

[
e−µ1

e−µ2

]
=
[
H(σ1)
H(σ2)

]
1T =: CT 1T ,

Every triplet (E,A,Aτ ), satisfying the above equations, interpolates the data.

Infinite possibility since 3 · 4 variables and 2 · 4 equations.

For Aτ = 0, it yields a rational function, obtained by the Loewner approach, of order r = 2.
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Rank Minimization Problems
Using a rank-minimization approach

We seek among infinite triplets that minimize as follows:

rank
([
E,A,Aτ

])
,

satisfying

E [ σ1
σ2

] + A [ 1
1 ] + Aτ

[
e−σ1

e−σ2

]
=
[
H(µ1)
H(µ2)

]
1T =: B1T ,

ET [ µ1
µ2 ] + AT [ 1

1 ] + AT
τ

[
e−µ1

e−µ2

]
=
[
H(σ1)
H(σ2)

]
1T =: CT 1T .

If we solve, then we get

E =
[
H(µ1)

H(µ2)

] [
1 1
1 1

] [
H(σ1)

H(σ2)

]
,

A = −
[
H(µ1)

H(µ2)

] [1 1
1 1

] [
H(σ1)

H(σ2)

]
,

Aτ = 0.25
[
H(µ1)

H(µ2)

] [1 1
1 1

] [
H(σ1)

H(σ2)

]
.

Note that the rank of
[
E,A,Aτ

]
= 1.

Hence, using a compression step, we can obtain the same transfer function.
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Rank Minimization Problems
Challenges

We have set-up a possible ideal problem to identify low-order models.

But rank-minimization problems are NP hard ones, and there is little hope of finding the global
minimum efficiently in all instances.

A general rank-minimization formulation

min
X

rank (X) subject to A vec (X) = b

A rank-minimization Problem Formulation

min
A1,A2,A3

rank
([
A1,A2,A3

])
subject to

A1F
Λ
1 + A2F

Λ
2 + A3F

Λ
3 = V1T ,

A1
TFΩ

1 + A2
TFΩ

2 + A3
TFΩ

3 = W1T ,
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Rank Minimization Problems
Relaxation

min
X

rank (X) subject to A vec (X) = b (2)

Relaxed: minX

∑
i g(σi) subject to A vec (X) = b

Observe: rank (X) = ‖σ(X)‖l0 , where σ(X) =
[
σ1, . . . ,σn

]
.

What we are going to look at, instead, efficient heuristics.

‖σ(X)‖l0 → ‖σ(X)‖l1 := ‖X‖∗ (nuclear norm of X).
– the best convex relaxation. [Fazel ’02]

‖σ(X)‖l0 →
∑
i(σi)

p

– concave function but better approximation of cardinality.
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Rank Minimization Problems
Singular value thresholding

An ideal problem

minX rank (X) subject to A vec (X) = b

Relaxation

minX

∑
i g(σi) subject to A vec (X) = b

If g(σi) = σi:

minX ‖X‖∗ subject to A vec (X) = b

Note that similar iterations are possible for a concave heuristics of the rank function, i.e.,
g(σi) = σ0.5

i .
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Shrinkage Operator

Let M be a matrix and its SVD be M = UΣV∗ with Σ = diag (σ1, . . . ,σn). The shrinkage operator
Dτ is defined as

Dτ (M) = UDτ (Σ)V∗, Dτ (Σ) = diag ((σ1 − τ)+, . . . , (σn − τ)+) ,

where t+ = max(t, 0).
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Relaxation

minX

∑
i g(σi) subject to A vec (X) = b

If g(σi) = σi:

minX ‖X‖∗ subject to A vec (X) = b

Uzawa’s iterations [Cai/Candes/Shen ’10]

Optimal solution is given by
z = AT (yk−1);
Z = reshape(z,n, 3n) n : number of data points
Xk = Dτ (AT (yk−1)))
yk = yk−1 + δk

(
b−A vec

(
XK

))

Note that similar iterations are possible for a concave heuristics of the rank function, i.e.,
g(σi) = σ0.5
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Numerical Examples
Fishtail example

A second-order example: Fishtail example (n = 779, 232)

Consider 296 points and look for a minimal order second-order system that fits the data.

Mẍ(t) + Dẋ(t) + Kx(t) = Bu(t), y(t) = Cx(t).
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Rank-based (r = 20)
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Numerical Examples
A delay example

A delay example

Consider 40 points and look for a minimal order delay system that fits the data.

Eẋ(t) = Ax(t) + Aτx(t− 1) + Bu(t), y(t) = Cx(t).
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Measurement Noise
Illustration of Loewner with noise

Data obtained using sensors or in a lab are corrupted with noise.

Hence, data-based algorithm should be robust with respect to noise.

Consider 10 data points

10−1 100 101 102 103
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100

freq

‖H
‖

training data

Let us apply the
Loewner method to
have a rational function
(E,A,B,C).
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Measurement Noise
Illustration of Loewner with noise

Observe the decay of singular values of the Loewner pencil.

2 4 6 8 10
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10−2

We obtain a 3rd order system, interpolating the data.

E =

1 0 0
0 1 0
0 0 1

 ,

A =

 −1 100 0
−100 −1 0
0 0 −3
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B =

−1.5461
−0.7585
−1.1096


C =

−0.8456
−0.5727
−0.5587

 .
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Measurement Noise
Illustration of Loewner with noise

Add 1% noise in the data and construct 3rd-order dynamical system using the Loewner method.
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Measurement Noise
Rank-based problem formulation

A rank-minimization Problem Formulation + Noise (for the simplest linear system)

min
E,A

rank
([
E,A

])
(3)

subject to

‖EΛ + A−V1T ‖F ≤ ε,
‖ETΩ + AT −W1T ‖F ≤ ε,

where Λ = diag (λ1, . . . ,λl) , Ω = diag (µ1, . . . ,µl) ,

Intuition: Looking for a minimal-order systems at approximately interpolate data but not exactly.

A similar formulation was proposed in [Fazel/Hindi/Byod ’04] in the context of system identification
using time-domain noisy data.
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Measurement Noise
Rank-based problem formulation
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We could recover the original system.
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Conclusions

Contribution of this talk

Identification of linear systems from frequency response

Can impose structure obtained using prior engineering knowledge

An efficient algorithm to solve the optimization problem

Proof of concepts by mean of numerical examples

Open questions and future work

Working with data obtained in a lab

What if the structure is not known: structure discovery

Need to do analysis for noisy case

Thank you for your attention!!
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