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Introduction
Linear Systems

EX(If) = f(ta X(t), u(t)))a X(O) =0,
here ¥(t) = Cx(0),
o (generalized) states x(t) € R™ (invertible E € R™"*™),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(¢) € R%.
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i Introduction
Linear Systems

Dynamical systems

EX(t) = f(ta X(t), ll(t))), X(O) =0,
here ¥(t) = Cx(t),
o (generalized) states x(t) € R™ (invertible E € R™"*™),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(¢) € R%.

System Classes

Classical linear systems: f(x) := Ax(t) + Bu(t),
Delay systems: f(x) := Ax(t) + A x(t — 7) + Bu(¢),
t ¢
Second-order system f(x) := Ax(t) + Ay / x(t)dr + | Bu(r)7,...,
0 0
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Q @ Introduction

Linear Systems

v

Dynamical systems

EX(t) = f(ta X(t)a u(t)))> X(O) =0,
where Y(t) - CX(t),
o (generalized) states x(t) € R™ (invertible E € R™*™),
@ inputs (controls) u(t) € R™,

o outputs (measurements, quantity of interest) y(¢) € R%.

Frequency domain representation

o Using Laplace transform, we can convert time-domain representation into the frequency domain.
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@ @ Introduction

Linear Systems

Dynamical systems

Ex(t) = f(t, X(t)a u(t)))> X(O) =0,
" y(t) = Cx(t).

o (generalized) states x(t) € R™ (invertible E € R™*™),
@ inputs (controls) u(t) € R™,

o outputs (measurements, quantity of interest) y(¢) € R%.

Frequency domain representation

o Using Laplace transform, we can convert time-domain representation into the frequency domain.

o This yields Y(s) = H(s)U(s).
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Y Introduction
w Linear Systems

Dynamical systems

EX(t) = f(ta X(t)a u(t)))> X(O) =0,
where Y(t) - CX(t),
o (generalized) states x(t) € R™ (invertible E € R™*™),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(¢) € R%.

Frequency domain representation

o Using Laplace transform, we can convert time-domain representation into the frequency domain.

o This yields Y(s) = H(s)U(s).

o Hence, H(s), called as transfer function is known, we can write the output of a system for any
given input.

ion Approach to Learning Dynamical Systems from Frequency Response Data
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Y Introduction
w Linear Systems

Dynamical systems

Ex(t) = f(t, X(t)a u(t)))> X(O) =0,
" y(t) = Cx(t).

o (generalized) states x(t) € R™ (invertible E € R™*™),
@ inputs (controls) u(t) € R™,
o outputs (measurements, quantity of interest) y(¢) € R%.

Frequency domain representation

o Using Laplace transform, we can convert time-domain representation into the frequency domain.

o This yields Y(s) = H(s)U(s).

o Hence, H(s), called as transfer function is known, we can write the output of a system for any
given input.

o Moreover, H(s), the transfer function of a system, completely characterize the dynamics.

ion Approach to Learning Dynamical Systems from Frequency Response Data
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o Introduction
w@ Linear Systems

y(t) = Cx(2). L G(s) = C(sE - A)"'B.

Linear system (standard) G g
e Time v Frequency r—( inear system (standard)
Ex(t) = Ax(t) + Bu(t),
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@ @ Introduction

Linear Systems

Ex(t) = Ax(t) + Bu(t),
y(t) = Cx(t).

A

,—(Linear system (standard)H

J

Mx(t) + Dx(t) + Kx(t) = Bu(t),
y(t) = Cx(1).

/—(Second-order system)ﬁ

Time s Frequency r—(Linear system (standard)
L G(s) = C(sE — A)"'B.
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ime +— Frequency
L G(s) = C(s’M + sD + K)~'B.
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Introduction
Linear Systems

eo

,—(Linear system (standard)H

Ex(t) = Ax(t) + Bu(t),

Time — Frequency

y(t) = Cx(¢).

A J

/—(Second-order system)ﬁ

Mx(t) + Dx(t) + Kx(t) = Bu(t),

r—(Linear system (standard)
L G(s) = C(sE — A)"'B.

Time +— Frequency

L y(t) = Cx(t). J
+

Ex(t) = Ax(t) + Arx(t—7) + Bu(t),

r—(Second-order system
L G(s) = C(s’M + sD + K)~'B.

Time — Frequency

y(t) = Cx(t).

|l G=C(GE-A-A.e)'B
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@& @ Introduction

Linear Systems

] Linear system (standard)} r—(Linear system (standard))ﬁ

Ex(t) = Ax(t) + Bu(t)7 Time + Frequency " 4
¥(t) = Cx(). L G(s) = G(sE— A)~'B.

A J
(—(Second-order system%

) (—(Second-order system
Mx(t) + Dx(t) + Kx(t) = Bu(t), Time — Frequency 5 —a
L G(s) =C(s“M +sD + K) "B.
L y(t) = Cx(t). J

———— Oy —————

Ex(t) =] Ax(t) - A‘rx(t—T) e Bu(t), Time + Frequency
L y(®) = Cx(o). )

——{{tegro system}—————

t
Ex(t) = Ax(t) + A~ / x(7)dr + Bu(t), Time > Frequency
0

y(t) = Cx(?).

|l G=C(GE-A-A.e)'B
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Introduction
How to measure the transfer function

o Excite the system

e '
TR
P
PRBS' . !
Mechanical System
Current Measurcment,
spmmy Frequency Response
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@ Very useful when system parameters are
not known.
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Introduction

How to measure the transfer function

o Excite the system @ Modeling is done using a proprietary
software

~> not so easy to get system matrices

However, we can obtain transfer function
evaluation much easier

e 22 i PERE e 25 simuLia
= i ABAQUS

- J

@ Very useful when system parameters are ‘
not known. ANS I S

FLUENT
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Goal

@&, @ Introduction

Goal of the talk

Build a linear model M such that

(a) it interpolates given transfer function measurements, i.e., Hq(jw;) = v;,
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f @ Introduction
5 Goal

Goal of the talk

Build a linear model M such that
(a) it interpolates given transfer function measurements, i.e., Hq(jw;) = v;,

(b) the model has the structure, given by engineering experts, e.g. second-order, delay, fractional, etc.
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Data-driven ldentification

Already talks along these lines

The Loewner framework for model reduction of large-scale systems
Athanasios Antoulas, Rice University

After reviewing the basics of rational Krylov projections and of the Loewner framework,
we will present an explicit generalized eigenvalue decomposition of the Loewner pencil.
This brings into the picture the sensitivity of the resulting eigenvalues with respect to the
choice of the data. This gives a basis for addressing the issue of “good” choices of data,
which has been elusive. Several numerical examples will illustrate these sensitivity issues.
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Data-driven ldentification

Already talks along these lines

The Loewner framework for model reduction of large-scale systems
Athanasios Antoulas, Rice University

:I Embedding properties of data-driven dissipative reduced order Models )
L Vladimir Druskin, WPI

cll Realizations of reduced order models of passive SISO or MIMO LTE problems can be transformed
w| to tridiagonal and block-tridiagonal forms, respectively, via different modifications of the Lanczos
algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor
(RCL) networks. They gave rise to network syntheses in the first half of the 20th century that was at
| the base of modern electronics design and consecutively to MOR that tremendously impacted many
areas of engineering (electrical, mechanical, aerospace, etc.) by enabling efficient compression of
the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to
their compressing properties, network realizations can be used to embed the data back into the
state space of the underlying continuum problems.
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Data-driven ldentification
Already talks along these lines

g5 >

ch

The Loewner framework for model reduction of large-scale systems
Athanasios Antoulas, Rice University

f Embedding properties of data-driven dissipative reduced order Models W

Vladimir Druskin, WPI

Realiz(~

totrid  The Loewner Framework for Model Reduction of Flow Equations

algori Matthias Heinkenschloss, Rice University

(RCL)

thebd  Tpe | gewner framework is an interpolatory model reduction approach which, in contrast

:I::atfn to other approaches, computes a reduced order model (ROM) directly from data. This talk

e discusses an extension of the Loewner framework to semi-discretizations of fluid flow

stated  Problems such as Burgers' equation or the Navier-Stokes equations. The extension
addresses behavior of the transfer function at infinity, quadratic nonlinearity of the flow
equations, and stability of the ROM. Numerical results illustrate the potential of the
Loewner framework, but also expose additional issues that need to be addressed to make it
fully applicable. Possible approaches to deal with some of these issues are outlined.
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— Data-driven ldentification
w“ Already talks along these lines

Rational interpolation problem

Given interpolation points {1, ...,09} C C and sample values {71, ...,72} C C, construct a rational
function H(s) = C (sE — A) ™' B, satisfying

H(O’j):’}/j, ]:1,,2l
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Data-driven ldentification

Loewner framework

@ Let us recall the Loewner framework in the single-input single-output case.
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Data-driven ldentification

Loewner framework

@ Let us recall the Loewner framework in the single-input single-output case.

interpolation points o, €C
o Data set as P P k ofork=1,...,2l

sample values ~; € C,
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A~ Data-driven ldentification

N Loewner framework

@ Let us recall the Loewner framework in the single-input single-output case.

interpolation points o} € C,

o Data set as fork=1,...,2[

sample values ~; € C,
o Partition the data into the left & right sets:

{0, v6)} = {(i,vi) U (\iywi)}, k=1,...2i=1,...,1
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Data-driven ldentification

Loewner framework

@ Let us recall the Loewner framework in the single-input single-output case.

interpolation points oy, € C,

o Data set as fork=1,...,2l.

sample values ~; € C,
o Partition the data into the left & right sets:

{0, v6)} = {(i,vi) U (\iywi)}, k=1,...2i=1,...,1

Find a rational function H(s) = C (sE — A)™ ' B such that

H(u;) = vj, H(A) = w;.
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Data-driven ldentification

w Loewner framework

@ Let us recall the Loewner framework in the single-input single-output case.

interpolation points oy, € C,

o Data set as fork=1,...,2l.

sample values ~; € C,
o Partition the data into the left & right sets:

{0, v6)} = {(i,vi) U (\iywi)}, k=1,...2i=1,...,1

Find a rational function H(s) = C (sE — A)™ ' B such that

H(u;) = vj, H(A) = w;.

Let us organize the data as follows:
Interpolation points : A = diag (A1,..., ), Q = diag (p1, .-, ),

Sample values: V = [vl,...,vl]T, W = [wl,...,wl]T.

(©Pawan Goyal, goyalp@mpi-magdeburg.mpg.de inimization Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

. Data-driven ldentification
w Loewner framework

Loewner Approach (Matrix form)

@ Let L and L, satisfy:

—LA+L, =V1T,
"o+ L," =wi17,

@ The rational function H(s) = C(sE — A)~'B interpolates the data, where

|E:—L, A=-L,, B=V, and C=W,

and the pencil (L, L) is regular.
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. Data-driven ldentification
\V“ Loewner framework

Loewner Approach (Matrix form)

@ Let L and L, satisfy:

—LA+L, =V1T,
"o+ L," =wi17,

@ The rational function H(s) = C(sE — A)~'B interpolates the data, where

|E:—L, A=-L,, B=V, and czw,|

and the pencil (L, L) is regular.

@ No need to solve Sylvester equations = matrices L and L, have analytic expressions.
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Data-driven ldentification
Loewner framework

S
N

Loewner Approach (Matrix form)

4
%

let | and | . satisfv:

vi—wW] L vVi—wy H1V]—A Wy L mava—Awy

H1—A1 1 —A] p1—A1 H1—Ag
L = ]LO- -

Vi—wW1 . V=W Pivi—Awi o V=AW

Hp—A1 Hi— A H1—AL pp—AL

Ty Y |

and the pencil (L, L) is regular.

@ No need to solve Sylvester equations = matrices L and L, have analytic expressions.
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. Data-driven ldentification
\V“ Loewner framework

Loewner Approach (Matrix form)

@ Let L and L, satisfy:

—LA+L, =V1T,
"o+ L," =wi17,

@ The rational function H(s) = C(sE — A)~'B interpolates the data, where

|E:—L, A=-L,, B=V, and czw,|

and the pencil (L, L) is regular.

@ No need to solve Sylvester equations = matrices L and L, have analytic expressions.

@ rank (L) = order of minimal realization = 7.
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. Data-driven ldentification
W Loewner framework

Loewner Approach (Matrix form)

@ Let L and L, satisfy:

—LA+L, =V1T,
"o+ L," =wi17,

@ The rational function H(s) = C(sE — A)~'B interpolates the data, where

|E:—L, A=-L,, B=V, and czw,|

and the pencil (L, L) is regular.

@ No need to solve Sylvester equations = matrices L and L, have analytic expressions.

@ rank (L) = order of minimal realization = 7.

@ Hence, a compression step using SVD of L and L, can be performed to obtain a minimal or approximate.
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—1 Data-driven Ildentification
| SO Structured Linear Systems

Objective: rational functions

Find a rational function H(s) = C (sE — A)~' B such that
H(p;) =v;, H\) = w;.
Find a (non-)rational function Hy,(s) = C (f1(s)A1 + fa(s)Ag + f3(s)As)” ' B such that

Hnr(ﬂj) =Vj, Hor (Ni) = wy.
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—1 Data-driven Ildentification
| SO Structured Linear Systems

Objective: rational functions

Find a rational function H(s) = C (sE — A)~' B such that
H(p) =v;, HO\) =w,.
Find a (non-)rational function Hy,(s) = C (f1(s)A1 + fa(s)Ag + f3(s)As)” ' B such that
Hur (1) = vj, Hur(A) = w;.

Fit into second-order systems, delay systems, fractional systems, etc.
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—1 Data-driven Ildentification
| SO Structured Linear Systems

Objective: rational functions

Find a rational function H(s) = C (sE — A)~' B such that
H(p) =v;, HO\) =w,.
Find a (non-)rational function Hy,(s) = C (f1(s)A1 + fa(s)Ag + f3(s)As)” ' B such that
Hur (1) = vj, Hur(A) = w;.

Fit into second-order systems, delay systems, fractional systems, etc.
For instance, second-order systems: fi(s) = s2, fo(s) = s, and f3(s) = 1.

(©Pawan Goyal, goyalp@mpi-magdeburg.mpg.de A Rank Minimization Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

—1 Data-driven Ildentification
| SO Structured Linear Systems

Objective: rational functions
Find a rational function H(s) = C (sE — A)~' B such that

H(p;) = v, H\) = w;.
Find a (non-)rational function Hy,(s) = C (f1(s)A1 + fa(s)Ag + f3(s)As)” ' B such that
Hnr(ﬂj) = Vj, Hnr(>\z) = W;.

Fit into second-order systems, delay systems, fractional systems, etc.
Once again, we organize the data as follows:

interpolation points : A = diag (A\1,...,\;), Q= diag (1, .., 1),

Sample values: V= [vi,...,vq] ", W = [wl,...,wl]T.
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Data-driven Identification
Structured Linear Systems

Identification of structured systems [UNGER/ScHULZE/BEATTIE/G

@ Let us say the matrices A;, A2, and Aj satisfy:

AF} + AoF) + AsFS = V17,
ATFE + ALTFY + ASTEY = wit,

where F2 = diag (f;(\1),..., fi(\)), F$ =diag (fi(u1), ..., fi(u)), and V and W are vectors,
containing measurements.
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Y Data-driven ldentification
| SO Structured Linear Systems

Identification of structured systems [UNGER/ScHULZE/BEATTIE/ GUGERCIN ’16]

@ Let us say the matrices A;, A2, and Aj satisfy:

AF} + AoF) + AsFS = V17,
ATFE + ALTFY + ASTEY = wit,

where F2 = diag (f;(\1),..., fi(\)), F$ =diag (fi(u1), ..., fi(u)), and V and W are vectors,
containing measurements.

@ The function Hu(s) = W7 (f1(s)A1 + fa(s)Az + f3(s)As) "'V interpolates the data, i.e.,
Hnr()\i) = Wy, Hnr(ll/i) = Vi,

assuming [A1, Ag, As] is of row full-rank. If it is not full-rank, a compression step can be performed.
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Data-driven Identification
Structured Linear Systems
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Data-driven Identification
Structured Linear Systems

@ Number of equations: 22 o Number of equations: 22

wan Goyal, goyalp@mpi-magdeburg.mpg.de zation Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

Data-driven Identification
Structured Linear Systems

@ Number of equations: 22 o Number of equations: 22
o Number of variables: 22 @ Number of variables: 312
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Data-driven Identification
Structured Linear Systems

@ Number of equations: 22 o Number of equations: 22
o Number of variables: 212 o Number of variables: 312
@ Unique solution @ Infinitely many solutions

Remark: [Uncer ’16] have tried to enforce additional con-
straints/conditions to utilize extra variables.
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A~ Data-driven ldentification

w Structured Linear Systems

Number of equations: 2[? Number of equations: 2/?

Number of variables: 22 Number of variables: 3[2

Unique solution Infinitely many solutions

Analytical expression (divide and No such thing

difference)
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Data-driven Identification
Structured Linear Systems

@ Number of equations: 22 Number of equations: 2/?

°

o Number of variables: 212 @ Number of variables: 372

@ Unique solution @ Infinitely many solutions
°

o Analytical expression (divide and No such thing

difference)

The simplest answer is often the right one.

Occam's Razor
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Data-driven Identification
Structured Linear Systems

@ Number of equations: 22 Number of equations: 2/?

°

o Number of variables: 212 @ Number of variables: 372

@ Unique solution @ Infinitely many solutions
°

o Analytical expression (divide and No such thing

difference)

The simplest answer is often the right one.

Occam's Razor

In dynamical systems, simplicity can be defined as “minimal order systems, describing the dynamics, or
interpolating the data " .
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o Data-driven ldentification
\ SO How to put together

Identification of structured systems [UNGER/ScHULZE/BEATTIE/ G

@ Let us say the matrices A;, A2, and Aj satisfy:

AF} + AFD 4+ AsFS =17,
ATFE + ALTFY + ASTEY = wit,

where F2 = diag (f;(A1), ..., fi(\)), F$ =diag (fi(u), ..., fi(w)),

A result [BENNER/G./

rank ([A1,A2,A3]) = minimum order of a realization that interpolates the data.

(©Pawan Goyal, goyalp@mpi-magdeburg.mpg.de inimization Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

Rank Minimization Problems
Optimization Formulation

A rank-minimization Problem Formulation

Algii;lAa rank ([Al, As, Ag])

subject to

A FL + AQFY 4+ A3FS = V1T,
AVTFS 4+ ALTFS + ASTFY = Wit

where F2& = diag (fi(A1), ..., fi(N)), F$=diag (fi(u1),.-., fi(1)), and V and W are vectors,
containing measurements.

(©Pawan Goyal, goyalp@mpi-magdeburg. mpg.de ion Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

Rank Minimization Problems
Illlustration

A delay example

o Consider a delay system whose transfer function is: H(s) = (s + 1 — 0.25¢=*)"%.
o Take four distinct measurements: H(o1), H(o2), H(pu1), H(pu2)
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—1 Rank Minimization Problems
| SO lllustration

A delay example

o Take four distinct measurements: H(o1), H(o2), H(pu1), H(u2)

Identification (inverse) problem

Given measurements, identify a delay model that interpolates the measurement.
In other words, construct a state-space model:

Ex(t) = Ax(t) + A;x(t — 1) + Bu(t), y(t) = Cx(t)

such that Higen(0;) = H(o;) and Hiygen (1) = H(p), @ € {1, 2}.

A Rank Minimization Approach to Learning Dynamical Systems from Frequency Response Data
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y - % Rank Minimization Problems
554 lllustration

Identification (inverse) problem

Given measurements, identify a delay model that interpolates the measurement.
In other words, construct a state-space model:

Ex(t) = Ax(t) + A;x(t — 1) + Bu(t), y(t) = Cx(t)

such that Higen(0;) = H(o;) and Hrygen (1) = H(p), @ € {1,2}.

Necessary Conditions for interpolation [UNGER ET. AL ’16]
o =@ H
E[" L] +A[M]+A; [e 16_1,2}:[11[8:;” 17 = B1T,
@ _ | H(e 0
ET [ L]+ AT [N )+ AT [ L, ] = (R ] 17 = e,

o Every triplet (E, A, A.), satisfying the above equations, interpolates the data.
o Infinite possibility since 3 - 4 variables and 2 - 4 equations.
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y - ¥ Rank Minimization Problems
554 lllustration

Identification (inverse) problem

Given measurements, identify a delay model that interpolates the measurement.
In other words, construct a state-space model:

Ex(t) = Ax(t) + A;x(t — 1) + Bu(t), y(t) = Cx(t)

such that Higen(0;) = H(o;) and Hrygen (1) = H(p), @ € {1,2}.

Necessary Conditions for interpolation [UNGER ET. AL ’16]
o =@ H
E[" L] +A[M]+A; [e 16_32]=[ng;ﬂ 17 = B1T,
@ _ | H(e 0
ET [ L]+ AT [N )+ AT [ L, ] = (R ] 17 = e,

o Every triplet (E, A, A.), satisfying the above equations, interpolates the data.
o Infinite possibility since 3 - 4 variables and 2 - 4 equations.
@ For A, =0, it yields a rational function, obtained by the Loewner approach, of order r = 2.
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Rank Minimization Problems

Using a rank-minimization approach

o We seek among infinite triplets that minimize as follows:
rank ([E7 Al AT]) ,

satisfying
o —o H
E[7 ] +Al ]+ A <7 | =R " =BT,
e H(o .
BT[]+ AT [ ]+ AT [ ] =R ] = c”,
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Rank Minimization Problems

Using a rank-minimization approach

o We seek among infinite triplets that minimize as follows:
rank ([E, A AT]) ,

o If we solve, then we get

_ [HGu) 1 1] [H(ow)
E= |: H(Hz)] |:1 1:| |: H(@)}’
_ [Hu) L 1| rH()
A__{ 1 Hm)] [1 1] [ 1 H<02>]7

A, =025 [0 ] E ﬂ [ |-
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Rank Minimization Problems

Using a rank-minimization approach

o We seek among infinite triplets that minimize as follows:
rank ([E, A AT]) ,

o If we solve, then we get

o Note that the rank of [E, A, A] =1.
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Rank Minimization Problems

Using a rank-minimization approach

o We seek among infinite triplets that minimize as follows:
rank ([E, A AT]) ,

o If we solve, then we get

_ [H(um) I 1) [H(@)

E= " g [1 1} 5 s ]
__ [HE@) L 1| [H(o)

A__{ 1 Hm)] [1 1] [ 1 H<02>]7
_ H(p1) L 1| rH(o)

Ar= 0'25[ i H(H2)} |:1 1:| { i H(Gz)] ’

o Note that the rank of [E, A, A] =1.

@ Hence, using a compression step, we can obtain the same transfer function.
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Rank Minimization Problems

Challenges

@ We have set-up a possible ideal problem to identify low-order models.
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Rank Minimization Problems

Challenges

@ We have set-up a possible ideal problem to identify low-order models.
@ But rank-minimization problems are NP hard ones, and there is little hope of finding the global
minimum efficiently in all instances.
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Rank Minimization Problems

Challenges

@ We have set-up a possible ideal problem to identify low-order models.
@ But rank-minimization problems are NP hard ones, and there is little hope of finding the global
minimum efficiently in all instances.

A general rank-minimization formulation

|
on

m}én rank (X) subject to Avec (X)
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Rank Minimization Problems

Challenges

@ We have set-up a possible ideal problem to identify low-order models.
@ But rank-minimization problems are NP hard ones, and there is little hope of finding the global
minimum efficiently in all instances.

A general rank-minimization formulation

m}énrank (X) subjectto Avec(X)=Db

A rank-minimization Problem Formulation

A1{%i2I,lA3 rank ( [Ah - AS] )

subject to

A F) + AoF) + A3FS = ViIT,
A TF + ATFS + ATFY = W17,
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Rank Minimization Problems

Relaxation

m}én rank (X) subject to Avec(X)=Db (2)
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Rank Minimization Problems

Relaxation

m}én rank (X) subject to Avec(X)=Db (2)

o Observe: rank (X) = ||o(X)||;,, where 0(X) = [o1,...,04].
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Rank Minimization Problems

Relaxation

m}én rank (X) subject to Avec(X)=Db (2)

Relaxed: minx >, g(0;) subjectto Avec(X)=Db

o Observe: rank (X) = ||o(X)||;,, where 0(X) = [o1,...,04].
o What we are going to look at, instead, efficient heuristics.
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Rank Minimization Problems

Relaxation

m}én rank (X) subject to Avec(X)=Db (2)
Relaxed: minx >, g(0;) subjectto Avec(X)=Db
o Observe: rank (X) = ||o(X)||;,, where 0(X) = [o1,...,04].
o What we are going to look at, instead, efficient heuristics.

o |lo(X)|[ig = [lo(X)|li; := [|X]|« (nuclear norm of X).
— the best convex relaxation. [FAaZEL 02]
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Rank Minimization Problems

Relaxation

m}én rank (X) subject to Avec(X)=Db (2)

Relaxed: minx >, g(0;) subjectto Avec(X)=Db

o Observe: rank (X) = ||o(X)||;,, where 0(X) = [o1,...,04].
o What we are going to look at, instead, efficient heuristics.

o |lo(X)|[ig = [lo(X)|li; := [|X]|« (nuclear norm of X).
— the best convex relaxation. [FAaZEL 02]

o [lo(X)lli = >2;(04)”
— concave function but better approximation of cardinality.
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Rank Minimization Problems

Singular value thresholding

An ideal problem

minx rank (X) subject to Avec(X)=Db
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Rank Minimization Problems

W Singular value thresholding
minx rank (X) subject to Avec(X)=Db minx Y . g(0;) subjectto Avec(X)=Db
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Rank Minimization Problems

Singular value thresholding

minx rank (X) subject to Avec(X)=Db minx Y . g(0;) subjectto Avec(X)=Db

Let M be a matrix and its SVD be M = UXV* with ¥ = diag (01,...,0,). The shrinkage operator
D, is defined as

D,(M) =UD-(2)V*, D (X)=diag((o1 —T)+,---,(0n —T)4),

where ¢4 = max(¢,0).
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Rank Minimization Problems

Singular value thresholding

minx rank (X) subject to Avec(X)=Db minx Y . g(0;) subjectto Avec(X)=Db
If g(o;) = 0i:
minx [|X||. subjectto Avec(X)=Db

Let M be a matrix and its SVD be M = UXV* with ¥ = diag (01,...,0,). The shrinkage operator
D, is defined as

D,(M) =UD-(2)V*, D (X)=diag((o1 —T)+,---,(0n —T)4),

where ¢4 = max(¢,0).
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Rank Minimization Problems

S Singular value thresholding

minx rank (X) subject to Avec(X)=Db minx Y . g(0;) subjectto Avec(X)=Db
If g(o;) = 0i:
minx [|X||. subjectto Avec(X)=Db

Uzawa'’s iterations [CA1/CANDES/SHEN '10]
Optimal solution is given by
T (,k—1).
z =AW
7 = reshape(z,n,3n) n : number of data points

XF =D (A" (y* 1))
y* =y + 6 (b — Avec (XK))
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Rank Minimization Problems

Singular value thresholding

minx rank (X) subject to Avec(X)=Db minx Y . g(0;) subjectto Avec(X)=Db
If g(0;) = oy
minx [|X||. subjectto Avec(X)=Db
Uzawa'’s iterations [CA1/CANDES/SHEN '10]
Optimal solution is given by
z = AT
7 = reshape(z,n,3n) n : number of data points

XF =D (A" (y* 1))
y* =y + 6 (b — Avec (XK))

o Note that similar iterations are possible for a concave heuristics of the rank function, i.e.,

g(oi) = o).
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Fishtail example

@ Numerical Examples

A second-order example: Fishtail example (n = 779, 232)

o Consider 296 points and look for a minimal order second-order system that fits the data.

Mx(t) + Dx(t) + Kx(¢t) = Bu(t), y(t) = Cx(t).

101 ; LBLALALIL LI I LR LLL B AL > IR LLL BB AL “‘”%

g — o :

| |

— 10°} <
= i ﬂ ]
E [ i
— 107! g €
i o i

10—2 T T | O RN SO M1 N WA
10-2 107+ 10° 10' 10 10* 10* 10°

freq
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@ Numerical Examples

Fishtail example

A second-order example: Fishtail example (n = 779, 232)

o Consider 296 points and look for a minimal order second-order system that fits the data.

10!

e L B 1) S B B O AL LIS L B B B B O R R
B O training data ]
| | —— Rank-based (r = 20) |

_10°%p E

= 1

E L |

1071 E
-2 Ll Lol Ll Ll Ll Lol Ll
10-* 107t 10° 10t 10> 10® 10  10°
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@ Numerical Examples

A delay example

A delay example

o Consider 40 points and look for a minimal order delay system that fits the data.

Ex(t) = Ax(t) + A;x(t — 1) + Bu(t), y(t) = Cx(?).
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@ Numerical Examples

A delay example

A delay example

o Consider 40 points and look for a minimal order delay system that fits the data.

10!

= T T T TTT] T T e e e e e e 1 =
- — Rank-based (r = 5) |
| --=- Orig (n =5) ]
10° g O training data E
= 10| i}
g0
10_2 E E
10_37 Ll Ll |
107! 10° 10! 10 10°
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Measurement Noise

Illustration of Loewner with noise

@ Data obtained using sensors or in a lab are corrupted with noise.
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Measurement Noise

Illustration of Loewner with noise

@ Data obtained using sensors or in a lab are corrupted with noise.
@ Hence, data-based algorithm should be robust with respect to noise.
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Measurement Noise

Illustration of Loewner with noise

@ Data obtained using sensors or in a lab are corrupted with noise.
@ Hence, data-based algorithm should be robust with respect to noise.

Consider 10 data points

1005 T T T T EUERRR T Ty
B ‘ —e— training data ‘ ]
® o o g g
10~ o E
E § ° o 1 o Let us apply the
= i 1 Loewner method to
1072 | - have a rational function
E o ° 1 (E,A,B,C).
10_3 Ll Ll Ll \\\\HT
1071 10° 10! 10? 103
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£ Measurement Noise

W lllustration of Loewner with noise

@ Observe the decay of singular values of the Loewner pencil.

10—2 —\
1078
10~14 \
\
\
1020 \
2 4 6 8 10
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Measurement Noise

Illustration of Loewner with noise

@ Observe the decay of singular values of the Loewner pencil.

o We obtain a 3rd order system, interpolating the data.

10°

107!

=]l

—— original
- -- Loewner

O training data

L liiim

o O
o = O
= o O

BRI

-1 100
—100 -1
0 0

——1.5461}

Lol
>
Il

B = |-0.7585
| —1.1096

C = |-0.5727| .
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10°

101
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102 103 | —0.5587
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Measurement Noise

Illustration of Loewner with noise

o Add 1% noise in the data and construct 3rd-order dynamical system using the Loewner method.
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Measurement Noise

Illustration of Loewner with noise

o Add 1% noise in the data and construct 3rd-order dynamical system using the Loewner method.

100 T T T TTTTT] T T T TTTT] T T T TTTTT T \HH% 100: E
101 1oy :
1 102k .

1077 — S
—— original W 103k E

P Loewner u b g E
10 O training data | % 10~4 % -
10—4|: Lol Lol Lol I \\HHT 10_5: | | | | ]
1071 10° 10t 102 103 2 4 6 8 10
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Measurement Noise
Rank-based problem formulation

A rank-minimization Problem Formulation + Noise (for the simplest linear system)

Iélgl rank ([E, A]) (3)

)

subject to

[EA +A - V1T||r <e,
IETQ + AT - W17 ||z <,

where A = diag (A\1,...,\), Q=diag(u1,...,m),
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Measurement Noise
Rank-based problem formulation

A rank-minimization Problem Formulation + Noise (for the simplest linear system)

réli‘il rank ([E, A]) (3)

)

subject to

[EA +A - V1T||r <e,
IETQ + AT - W17 ||z <,

where A = diag (A\1,...,N), Q=diag(p1,...,m),

@ Intuition: Looking for a minimal-order systems at approximately interpolate data but not exactly.

(©Pawan Goyal, goyalp@mpi-magdeburg.mpg.de inii ion Approach to Learning Dynamical Systems from Frequency Response Data


mailto:goyalp@mpi-magdeburg.mpg.de

Measurement Noise
Rank-based problem formulation

A rank-minimization Problem Formulation + Noise (for the simplest linear system)

réli‘il rank ([E, A]) (3)

)

subject to

[EA +A - V1T||r <e,
IETQ + AT - W17 ||z <,

where A = diag (A\1,...,N), Q=diag(p1,...,m),

@ Intuition: Looking for a minimal-order systems at approximately interpolate data but not exactly.

@ A similar formulation was proposed in [FazeL/Hinpi/Byob *04] in the context of system identification
using time-domain noisy data.
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Measurement Noise

10°

107t

Rank-based problem formulation
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210101
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@ We could recover the original system.
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@ Conclusions

Contribution of this talk

o Identification of linear systems from frequency response

o Can impose structure obtained using prior engineering knowledge
o An efficient algorithm to solve the optimization problem

@ Proof of concepts by mean of numerical examples
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& ® Conclusions

Contribution of this talk

Identification of linear systems from frequency response

°
o Can impose structure obtained using prior engineering knowledge
o An efficient algorithm to solve the optimization problem

o

Proof of concepts by mean of numerical examples

Open questions and future work

@ Working with data obtained in a lab
@ What if the structure is not known: structure discovery

@ Need to do analysis for noisy case
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& ® Conclusions

Contribution of this talk

o Jdentification of linear svstems from freauencv resnanse

Thank you for your attention!!

Open questions and future work

@ Working with data obtained in a lab
@ What if the structure is not known: structure discovery
@ Need to do analysis for noisy case
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